
Informatics in Medicine Unlocked 23 (2021) 100561

Available online 31 March 2021
2352-9148/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Medical decision-making based on the exploration of a personalized 
medicine dataset 

Hafid Kadi a,b,*, Mohammed Rebbah a, Boudjelal Meftah a, Olivier Lézoray b 
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A B S T R A C T   

The emergence of personalized medicine and its exceptional advancements reveal new needs regarding the 
availability of adequate medical decision-making models. Considering detailed data on this medicine, the cre-
ation of a medical decision-making system may encounter many inhibitory factors, such as data representation, 
data reduction, data classification, and overall processing complexity. To address these challenges, this paper 
aims to create a useful model that can classify new patient data using efficient computations by choosing the best 
data processing series. Our methodology represents data with a recent model in the first task. During the second 
task, we continue with distance matrix production. The third task aims to reduce the dimensions of the last 
matrix. The fourth task applies a classification according to the results of reduced dimensionality. We have tested 
several distance measurements, dimensionality reduction methods, and classification techniques to achieve 
maximum performance. The evaluation results of the proposed model have shown excellent performance. Its F- 
measure can achieve an impressive rating with several classifiers (F-measure = 0.917, F-measure = 0.923, F- 
measure = 0.987 by 3-NN, random forest (RF) and support vector machine (SVM) classifiers). In addition to these 
performance measures, the computation time is also taken into account to choose among the proposed model’s 
derived methods (time = 2 ms, time = 76 ms, time = 118 ms for the 3-NN, RF, and SVM classifiers, respectively). 
According to the performance and processing time criteria, we defined three use-case scenarios. However, we 
recommend using the RF classifier for the data reduced by the t-distributed stochastic neighbor embedding 
(TSNE) technique in practical cases to compromise performance and speed criteria.   

1. Introduction 

A medical decision, regardless of its nature, about the prognosis or 
diagnosis of a patient’s response to prescription treatments or thera-
peutic plans, is a difficult task. Personalized medicine designs a medi-
cine centered on an attitude adapted to patient profiles. These profiles 
can include information about behavioral preferences, environmental 
factors, key biomarkers, treatment history, demographics, genetic 
composition, and other useful information. This information, such as 
body temperature and blood pressure, is observed and organized by 
medical events. The electronic storage form of these profiles is referred 
to as Electronic Health Records (EHR). EHR offers a data source with a 
very detailed level of data. Data can be structural, nonstructural or 
semistructural with different qualities, such as nominal, numerical, 
Boolean, date-time, image, text, video, sound, and Extensible Markup 
Language (XML). In addition, numerical and nominal medical events 

can be presented as time series or nominal sequences. Therefore, there is 
a considerable need for models to explore these datasets and facilitate 
decision-making. To facilitate medical decision-making, one can 
consider computer-aided procedures. The latter usually rely on classi-
fication techniques that operate on training data, the quality of both are 
important to achieve excellent results. The qualities and types of the 
considered data and the ways of representing and preprocessing data 
can be factors of decisive influence. As a sample, we can quote the 
example of structural data processing and the completion of missing 
values, as well as coping with both loss of information and data during 
the transformation process [16]. 

However, choosing the best classification techniques regarding a 
specific medical problem is also difficult if one wants to conceive an 
efficient computer-aided medical decision-making system. Different 
exploration results for the same data set may be returned due to each 
technique’s computation strategies. The computation time of medical 
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decisions is another crucial element of these systems, especially for ur-
gent cases. The processed data volumes, data dimension reduction 
techniques, and complexity of the classifiers utilized are the main factors 
affecting the processing time taken to perform an automated medical 
decision. This paper proposes a model for automated medical decision- 
making based on personalized medicine datasets. The model is intended 
to classify new patient data as predictive and preventive measures for a 
given disease and estimate the appropriateness of treatment for a given 
patient to avoid adverse effects. To achieve this process, our model 
combines three main steps. The first step produces a data representation 
by selecting, transforming, and coding structural, temporal, and 
nontemporal data. We treat all types of data and their heterogeneity. 
These data can be simple data, such as age, or time series, such as pe-
riodic temperature tests. These data can also be Boolean data “0/1” to 
indicate the presence and absence of a given event. Nominal data se-
quences, such as pain sites or organ colors, are also processed during 
treatments. Minimizing the loss of data and information is another 
aspect treated during the representation, which generates an important 
number of attributes. The result will be a very detailed symbolic rep-
resentation. Via the latter, the second step calculates the distance be-
tween all patients according to a determined measure; the result will be 
a numerical matrix. The dataset sometimes contains thousands of pa-
tients, which makes classification treatments computationally 
demanding. The third step reduces the previous numerical matrix 
dimensionality, using dimensionality reduction to simplify the calcula-
tions and reduce the processing time. The reduction is performed to 
obtain three dimensions. This choice is motivated by the visualization 
and interpretation needs of the classification results. The last step clas-
sifies the resulting 3D data and orients medical decisions by defining 
patient categories to be examined. We have identified the best combi-
nation of dimensionality reduction techniques with the best performing 
classifier. We implemented data mining techniques that produce an 
efficient automated medical decision-making model using these three 
steps. 

In the contribution plan, we targeted structural data by maximizing 
the types of data applied (four types) and minimizing as much as 
possible the loss of data and information carried on the time series 
during the choice of model representation. We tested three distances 
between patients and four-dimensionality reduction techniques on their 
results. Four different classifiers are tested, and global evaluations 
consider both performance and computation time constraints. 

According to the considered classification constraints, our work ex-
presses three scenarios for applying the most appropriate treatment 
series. A final compromise between the computation time and the ach-
ieved performance allowed us to determine a preferred processing suite 
for practical application. 

This paper is organized as follows: The data dimensionality reduction 
methods employed in related works are reviewed in Section 2. We detail 
the principle of our classification model in Section 3. Section 4 describes 
the experimentation and the evaluation of our proposal using a dataset 
for the Alzheimer’s Disease Neuroimaging Initiative.1 The results and 
the performance achieved are also discussed. Section 5 globally sum-
marizes our work and indicates the final choices on reduction and 
classification techniques in a real medical decision-making application. 

2. Related works 

The selected criteria can vary from one to several during a medical 
decision process, explaining this process treatment as a single or mul-
tiobjective optimization problem [38]. Papers [39–42] are interesting 
works that discuss medical decision-making, patient prioritization, and 
telemedicine in general. More than confidence, some cases require a fast 
decision, especially in urgent cases. This necessity requires dimension 
reduction techniques to simplify the calculations of the different clas-
sification techniques involved and decrease time. 

2.1. Data dimensionality reduction 

Personalized medicine data exploration involves working with large 
and multidimensional data. Many works use dimensionality reduction 
and visualization to understand, analyze, and treat such datasets. One of 
the famous dimensionality reduction techniques is principal component 
analysis (PCA) [1]. The PCA technique is based on transforming vari-
ables in a linear space and maximizing the variance to extract new 
characteristics in a reduced space that is referred to as principal com-
ponents. In a study of Parkinson’s disease, Shukla et al. [2] employed the 
PCA technique for data dimensionality reduction in the dysphonia fea-
tures’ classification process. In another study on the disease “systemic 
lupus erythematosus” [3], researchers applied PCA followed by visual-
ization and interpretation of the results. Kernel PCA (KPCA) is another 
technique for reducing and extracting characteristics [1]. To solve the 
problem of linear data inseparability, the KPCA technique was applied 
with other techniques on subsets of gene expression from several dis-
eases [4]. In a disease classification application, the proposed model 
uses the KPCA technique to reduce the data dimensionality and applies 
the least squares support vector machine (LSSVM) technique for classi-
fication [5]. Multidimensional scaling (MDS) is another technique for 
data reduction and visualization [6]. In an analysis realized by Vital 
et al. [7], the MDS technique is employed to reduce dimensionality and 
visualize, analyze, and report the results. T-distributed stochastic 
neighbor embedding (TSNE) is another dimension reduction and data 
visualization technique that is based on the distribution of data and their 
similarities to represent them in a new space of two or three dimensions. 
The new distribution more closely represents the data that have a high 
probability of similarity. Thus, the most dissimilar data are represented 
farther from each other [8]. After the data representation and similarity 
calculation, Zhang et al. [9] utilized the TNSE technique to reduce 
dimensionality and applied a clustering technique to define Parkinson’s 
disease subtypes. Workman et al. [10] investigated the TSNE reduction 
technique for patients’ temporal clinical data in a classification and 
analysis process that is intended to evaluate the effectiveness of deep 
learning on temporal data. This short overview shows that many studies 
have considered data dimensionality reduction techniques in EHR 
mining and classification. 

The main finding of these studies reveals an interest in the direct 
application of a single data reduction technology without comparison 
with others. This finding raises a question about the compatibility of 
these reduction techniques and the knowledge behind the data. 

2.2. Classification techniques 

Sometimes exploration works use different classification techniques 
to compare the results and evaluate performance. For example, the work 
of Mohammad et al. [11] applied seven classification algorithms for 
heart disease prediction: k-nearest neighbor (k-NN), decision tree, naïve 
Bayes (NB), logistic regression, support vector machine (SVM), neural 
network and vote (hybrid technique with NB and logistic regression). 
Other approaches [12,13] predict coronary artery and heart diseases by 
the following classification techniques: multilayer ANN, SVM, NB, and 
decision trees (C4.5). In İlkim et al. [14] and Vital et al. [15], six clas-
sification techniques are considered. The first technique applies the NB 

1 Data utilized in preparation of this article were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). 
The investigators within the ADNI contributed to the design and implementa-
tion of the ADNI and/or provided data but did not participate in the analysis or 
writing of this report. A complete listing of ADNI investigators can be obtained 
at:http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknow 
ledgement_List.pdf. 
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classifier, decision trees (Classification and Regression Tree (CART), 
C4.5, C5.0, C5.0 boosted), and random forest (RF) algorithms to analyze 
the effect of rheumatic fever on heart disease in childhood [14]. The 
second technique applies the alternating decision tree (AD tree), deci-
sion trees (C4.5), NB, BayesNet, K-Star, and RF to predict cancer disease 
and analyze the performance of the dataset [15]. 

The classifier selection behaviors applied for these latter approaches 
[11–15] vary among unjustified, popular and recommended ap-
proaches. This observation expresses no determined form of choice, and 
every professional can adopt any subjective measure. Additionally, the 
tested classifier number for each approach can vary between two and 
seven, a finding that may suggest exaggeration or insufficiency around 
the evaluation of the approaches. 

In addition to the previous reviews, most of the cited approaches 
treat only one or two data types. The missing values are removed or 
supplemented, which leads to a case of data loss. The studies do not 
specify the transformations applied to the data during the representa-
tion, which probably generates a loss of information. In addition, the 
studies do not adopt the time series and nominal sequence forms for the 
data and keep only the numerical or nominal forms of certain events. 

3. Method 

We represent the set of patients by P = {P1, P2 …, Pn} and the total 
number of patients by n. E is the notation of the medical events set, 
where E = {E1, E2 …, Em} and m is the total number of medical events. 

Our classification model (Fig. 1) has four sequential tasks.  

a) The model treats structural data and their numeric, date-time, 
nominal, and Boolean types to represent them more conveniently,  

b) Distances between patients are computed with the Jaccard distance,  
c) A dimensionality reduction of the distance matrix is produced on the 

output of the previous task, and  
d) The classification is performed on the data in the obtained new 

embedding space. 

We detail each of these steps in the sequel. 
More than the vision of the best processing suite exploration on 

personalized medicine datasets, the first task applies a recent and 
promising data representation model that will be applied for the first 
time in our classification process. 

3.1. Data representation 

This task includes preprocessing, transformation, and representation 
of the data. Due to the many data types and data time series encountered 
in the EHR, we use the Data Representation model per Region and 
Dispersion (DRRD) model that was recently proposed by Kadi et al. [16] 
to generate the symbolic representation of these data. We briefly expose 
its principle in the sequel. 

The first phase in the DRRD model is numeric data representation by 
region (DRR), which is based on numeric data clustering. We notify this 
first phase by DRR. DRR transforms date-time type events into numeric 
data by calculating the age of observations. Next, it partitions numeric 
data from each event and uses the clusters as membership regions of 
observations. A table will represent each numeric event. Linearization 
by the join of all produced representation tables generates a single global 
representation table. Based on notification and marking operations, the 
DRR phase will generate the following three representations: by a real 
value, binary, and by a symbol. 

The second phase attempts to mimic the first phase process plan, but 
this time the Boolean and nominal type events are considered. This 
phase begins with the transformation of data from Boolean events into 
nominal data. Each value of “0” will be replaced by “F”, and each value 
of “1” will be replaced by “Y”. For each event, Ei, a list Li is created, 
where each list must include only the various values observed for the 
corresponding event. Subsequently, each list Li corresponding to the 
event Ei will be transformed into the Table Ti, and each value in this list 
will generate a column in the associated table. This phase represents the 
list Li’s dispersion, which is why we refer to it as Data Representation by 
Dispersion (DRD). With the same linearization mechanism as the first 
phase of DRR, the DRRD model generates a single global representation 
table for all nominal events. The notification and marking operations 
also generate three representations: by a real value, binary, and by a 
symbol. 

The DRRD model assembles representations of the same type 
generated by the DRR and DRD phases to form a single global repre-
sentation of type by a real value, binary, or by a symbol as needed. 

In this paper, we use the symbolic representation of the model DRRD 
(SDRRD). The produced SDRRD table (Equation (1)) includes n = |P| 
rows according to the number of patients and q columns according to the 
new representation of the m = |E| dataset events, such that q≥ |E|. 

∀sij ∈ SDRRD  (0< i< |P| and 0< j< q )⇒

⎧
⎨

⎩

sij = null
Or
sij is a symbol

(1) 

The DRRD process parameters will be saved for subsequent use to 
represent the data of new patients. Fig. 2 resumes the whole data rep-
resentation task. 

3.2. Distance between patients (distance matrix generation) 

The SDRRD representation resulting from the previous task consti-
tutes the essential point and main entry of the current task. The SDRRD 
matrix rows have varying sizes in terms of the expressed symbol number 
due to the variability among patients. This variability depends on the 

Fig. 1. Treatment process.  Fig. 2. Data representation process.  
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captured events and the saved time-series length. As an example, a fever 
as an event Ef can occur for only some patients Pi, and the number of 
times Nf of when its measurements are taken can also vary between two 
patients. Therefore, the symbolic representation will generate symbolic 
sequences of Ef for those patients only and with varying lengths Nf. The 
remaining patients will have no representation for Ef. Generally, this 
variability is the main cause of missing values present in the SDRRD 
representation matrix. 

To compare the patients’ representations and avoid searching for a 
method for missing data completion, we decided to calculate the dis-
tance matrix between all the patients (DMP) according to a distance that 
considers this problem. The Jaccard distance was chosen for this task. 
For all patients Pi and Pj, we compute the Jaccard index J(Pi, Pj) ac-
cording to Equation (2). This index computes the percentage of common 
attributes compared to all the attributes of patients Pi and Pj. 

J
(
Pi,Pj

)
=
⃒
⃒Pi ∩ Pj

⃒/⃒⃒
⃒Pi ∪ Pj

⃒
⃒ (2) 

The compliment of this latter index gives the Jaccard distance DJ(Pi, 
Pj): 

DJ
(
Pi,Pj

)
= 1 − J

(
Pi,Pj

)
(3) 

The generated DMP matrix is a symmetric matrix with: 

∀  vij ∈ DMP  (0< i< |P| and 0< j< |P| )⇒

⎧
⎨

⎩

vij = 0 if i = j
Or
vij ≥ 0 if i ∕= j

(4) 

The resulting DMP matrix provides strong basis support for com-
parison among patients. This matrix constitutes a tool for measuring the 
homogeneity of the captured observations expression among patients. 
Surrounded by its characteristics, such as the data volume and the main 
variables in expressivity value terms, this matrix requires specialized 
processing with the following task. 

3.3. Dimensionality reduction 

Sometimes the EHRs include the data of thousands of patients, which 
generates an extensive DMP matrix (n X n). The complexity of the 
classification technique to be applied in the following task and the large 
size of the DMP matrix can result in certain computational difficulties. In 
addition to the computation time diminution, the dimension reduction 
objective in our approach is also considered for data visualization, and 
the relevant variable exploitation induces a learning improvement of 
our techniques during the next task. The current task consists of 
reducing the DMP matrix to only three dimensions (3D). The result of 
this reduction is reduced DMP (RDMP). Intuitively, this dimensionality 
reduction will give for each patient its three most similar dimensions. 
Saving the advanced parameters of the reduction is an inevitable 
requirement to apply them in future patients’ future processing. The 
data preparation for the next task of classification requires inserting the 
fourth column in the RDMP matrix, which carries the labeling infor-
mation for each patient. This approach will be employed for classifier 
learning only. Filling in the labeling information based on the dataset 
EHR produces a labeled RDMP (LRDMP) matrix (refer to Fig. 3). 

It is enough to apply only one reduction technique to the DMP matrix 
in our model. However, we have considered several reduction tech-
niques for comparison and analysis and selected the best technique. 
Based on the study of comparison realized by Shaeela et al. [17] on 
dimension reduction techniques, we choose four techniques: PCA, 
KPCA, MDS, and TSNE. Each technique has a strategy that gives us the 
following four reduced matrices: RPCA (reduction of PCA), RKPCA 
(reduction of KPCA), RMDS (reduction of MDS), and RTSNE (reduction 
of TSNE). Each strategy has several rows equal to the number of patients 
and three columns (3D reduction). Labeling the reduction of each 
technique produces the reduced matrices labeled LRPCA (Labeled 
RPCA), LRKPCA (Labeled RKPCA), LRMDS (Labeled RMDS), and 

LRTSNE (Labeled RTSNE). 
In addition, reducing the dimensionality to a 3D space enables the 

visualization of all the EHRs at once, which can be of interest for 
interactive data exploration. 

3.4. Classification 

The classification of a new patient NP requires its symbolic repre-
sentation SDRRD, which is referred to as NSDRRD. In this case, we use 
the parameters of the DRRD process that are saved during the first task. 
Let SDRRD(NP) be the function that returns the symbolic representation 
of the patient NP according to the DRRD model where: 

∀Pi ∈ P SDRRDi = SDRRD(Pi)  ∧  NSDRRD = SDRRD(NP) (5) 

Subsequently, the Jaccard distance is calculated from this NP to all 
patients using the SDRRD representations (Equation (6)). Of course, this 
distance will generate a new line DMPNP with |P| columns. 

∀Pi ∈ P  DMPNP[i] = DJ(NP,Pi)  where
DJ(NP,Pi) = DJ(NSDRRD,SDRRDi) ∧ SDRRDi = SDRRD(Pi)

(6) 

To reduce the dimension of this new line DMPNP, we reuse the 
reduction parameters generated and saved during the third task con-
cerned with dimension reduction (Equation (7)). The term “new patient 
RDMP (NRDMP)” will reduce this new patient line. 

NRDMP = 3DREDUCTION (DMPNP)  where 
∀Pi ∈  P RDMPi = 3DREDUCTION  (DMPi)

(7) 

DMPi is the line number i in the DMP matrix, and 3DREDUCTION 
(DMPi) is the function that returns the reduction of this line according to 
the deployed technique. 

Based on learning from the LRDMP matrix data, our process applies a 
classification technique CT on the new reduced line NRDMP to find the 
new patient category NPC. 

NPC=CLASSIFY(CT,NRDMP,LRDMP). (8) 

The calculation strategies adopted by the classification techniques 
and the performances obtained differ among techniques. To have an 
exhaustive evaluation, we will apply several classification techniques on 
the four reductions labeled LRPCA, LRKPCA, LRMDS, LRTSNE and apply 
several classification techniques on the labeled DMP (LDMP) matrix 
without any dimensionality reduction. Based on studies [18–21], with a 
reasonable number and by a compromise among popularity, accuracy, 
and recommendation of techniques, we choose the following four clas-
sifiers to apply: 

Fig. 3. Dimensionality reduction process.  
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• NB: It is a probabilistic model of supervised classification based on 
Bayes’ theorem and assumes independence between two attributes. 
This conditional model computes the posterior probability of the 
class categories for the input observations, and the observations are 
classified according to the class with the maximum posterior prob-
ability [22,23].  

• SVM: It is a supervised learning method based on a transformation 
using kernels and data separation by margin maximization to pro-
duce separating hyperplanes. The simplicity of using the SVM and its 
theoretical foundations justify its usefulness in several domains [24].  

• KNN: KNN uses the labeled learning set to classify a given example. 
This algorithm uses a distance to find the first K examples closest to 
this entry. By a majority vote, the most present class among this close 
K will be assigned to this example [25,26]. For our classification, we 
use k = 3 and notify this technique by (3-NN).  

• RF: It is a classification and regression technique in its origin that 
uses a combination of random decision trees. Similar to the bagging 
technique, the RF uses average aggregation for regression and ma-
jority voting for classification. This technique’s principal idea is to 
train decision trees on different data subsets and randomly chosen 
variables [27,28]. 

New patients can be considered ‘out-of-sample’ examples that do not 
belong to the initial training set. Their embedding coordinates in the 
dimensionality reduction are calculated by projection using the PCA and 
KPCA techniques. For the MDS technique, we use the out-of-sample 
extension proposed by Bengio et al. [29], which considers a normal-
ized kernel. We consider the out-of-sample algorithm proposed in the 
paper of Gisbrecht et al. [30] for the kernel TSNE technique as an 
extension to embed new patients. 

4. Experimental results 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu) is the source that provides the dataset employed in 
this experimentation. The ADNI was launched in 2003 as a public- 
private partnership led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of the ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neuropsychological 
assessments can be combined to measure the progression of mild 
cognitive impairment (MCI) and early Alzheimer’s disease (AD) [31]. 

The dataset, especially the ADNIMERGE_May15 table, contains 90 
attributes. Among these attributes we can cite the following attributes: 
AGE (patient age), FDG (average FDG-PET of angular, temporal, and 
posterior cingulate), PTETHCAT (ethnicity), PTEDUCAT (education), 
COLPROT (study protocol of data collection), Hippocampus_bl (UCSF 
hippocampus at baseline), APOE4 (apolipoprotein epsilon 4), PET 
(average PIB SUVR of frontal cortex; anterior cingulate; precuneus 
cortex; and parietal cortex), AV45 (average AV45 SUVR of frontal; 
anterior cingulate; precuneus; and parietal cortex relative to the cere-
bellum), CDRSB (clinical dementia rating scale – sum of boxes), ADAS11 
(ADAS-Cog-with 11 tasks), GDP (average PIB SUVR of frontal cortex; 
anterior cingulate; precuneus cortex; and parietal cortex), MMSE (Mini- 
Mental State Examination), RAVLT_immediate (Rey Auditory Verbal 
Learning Test immediate) [31] and others. Patients are categorized into 
five classes: Cognitively Normal (CN), Alzheimer’s disease (AD), Early 
Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment 
(LMCI), and Significant Memory Concern (SMC). Based on these classes, 
we applied data from 500 patients randomly selected (100 patients per 

class) to evaluate our model. Table 1 describes the statistics of the data 
line number in this dataset, where each line can contain up to 90 values 
according to the number of attributes. 

We have eliminated some attributes that have no medical signifi-
cance from this set of attributes and can bias the results, such as the 
patient ID. Only 87 attributes remain after this elimination. The DRRD 
process directly triggers the transformation operation of date-time and 
Boolean data, and each line in this step corresponds to a single obser-
vation (i.e., a single value). Table 2 summarizes the result statistics after 
this transformation. 

When the two treatments of the DRR and DRD representations 
terminate, the DRRD process generates the final SDRRD symbolic rep-
resentation by assembling the results. The symbolic table SDRRD rep-
resents the 500 patients in 1393 columns. 

The second task’s direct result is a symmetric matrix DMP composed 
of five hundred rows and five hundred columns. 

Fig. 4 shows the 3D display of the four-dimensionality reduction 
methods that we have considered. To show more detail about the dis-
tribution of all categories, we have colored each category. The AD, CN, 
EMCI, LMCI, and SMC classes are colored red, cyan, green, magenta, and 
orange, respectively. 

For the classification validation, we perform cross-validation ten 
times. Subsequently, we use the last test results for the reduction visu-
alization of new patients as a demonstration. First letter abbreviations of 
class names are used to avoid color overlap. The test examples of the 
Alzheimer’s disease, CN, EMCI, LMCI, and SMC classes are presented by 
A, C, E, L, and S, respectively. Fig. 5 visualizes these results. 

To evaluate our classification model on the data without reduction 
and with all the reduction techniques, we calculate the F-measure (FM) 
by Equation (9): 

FMT =
2TPT

2TPT + FPT + FNT
.  T  ∈ 

{

NB, SVM, 3NN, RF. (9)  

where TPT are all test patients of the category considered positive that 
were classified as positive during the T technique assessment. The FPT 
are all the test patients of the category considered negative that were 
classified as positive during the evaluation by the T technique assess-
ment. FNT are all test patients of the category considered positive that 
were classified as negative during evaluation by the T technique 
assessment. 

Table 3 shows the classification evaluation results for all categories. 
The classifications on the data reduced by the TSNE technique have 19 
better cases than the PCA (0 cases), KPCA (1 case), and MDS (0 cases) 
techniques. Subsequently, and against the 9 cases for the classification 
without LDMP reduction, we have 11 cases for the classification with 
TSNE reduction. 

Globally, for the five categories AD, CN, EMCI, LMCI, and SMC, and 
corresponding to each classifier NB, SVM, 3-NN, and RF, we calculate 
the global FM by Equation (10). 

FMT = AVG
c∈C

(

FM c
T

)

where

C  =
{

AD, CN, EMCI, LMCI, SMC
}

∧  T  ∈ 
{

NB, SVM, 3NN, RF.

(10)  

where FM c
T is the FM evaluation of classifier T corresponding to class c. 

Table 4 includes these results organized according to the cases with 

Table 1 
Dataset statistics.  

Classes AD CN EMCI LMCI SMC ALL classes 

No. of lines 456 1096 684 900 270 3406  

Table 2 
Observation statistics after the transformation step.  

No. of 
patients 

No. Of Numerical 
observations 

No. of Nominal 
observation 

All 
observations 

500 75,428 12,188 87,616  
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and without reduction. 
For the data reduction results in the last table (Table 4), the TSNE 

technique’s classification generated the four best averages. The tech-
nique generates 3 better F-measure averages with the classifiers NB (FM 
= 0.801), 3-NN (FM = 0.917) and RF (FM = 0.923) than the evaluation 
without reduction, which returned only one case with the SVM classifier 
(FM = 0.987). 

To study the chosen distance impact on our model result, we try to 
test another distance instead of the Jaccard distance (J. dist). We will 
repeat the entire evaluation of our model by calculating the Hamming 
distance [32] (H. dist) and Levenshtein distance [33] (L. dist) between 
the patients during the second task. Table 5 shows the FM results of this 
evaluation using data without reduction LRDMP and with reduction 
LRTSNE. 

For the statistics on cases without reduction, the classifications based 
on the Jaccard distance yielded better results (3 cases) than the Ham-
ming distance (1 case) and the Levenshtein distance (0 cases). The SVM 
technique with the Jaccard distance always returns the best 

performance (FM = 0.987). 
As previously mentioned, dimensionality reduction is utilized to 

minimize computation times to direct our evaluation of the classifica-
tion time study. For the case comparison with reduction and without 
reduction, we evaluate only the elapsed time by the classifications 
applied to the matrices labeled LDMP and LRTSNE. For each technique, 
this computation time is calculated by the average classification time of 
the five categories. Table 6 displays the time percentages of the classi-
fications with reduction versus without reduction. 

The SVM classifier returned the classifications’ maximum perfor-
mance on the data without reduction (FM = 0.987) in 118 ms. On the 
other hand, the two classifiers 3-NN and RF achieve excellent perfor-
mances on TSNE reduction (FM>= 0.917) with the superiority of RF but 
with a short time and superiority of 3-NN (Time. 3-NN: 2 ms, RF: 76 ms). 

Fig. 4. 3D reductions visualization. (a) PCA, (b) KPCA, (c) MDS, and (d) TSNE.  

Fig. 5. 3D reduction visualization of the last test fold. (a) PCA, (b) KPCA, (c) MDS, and (d) TSNE.  
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5. Discussion and evaluation 

5.1. Results evaluation 

Automated medical decision-making has to cope with many difficult 
challenges, as the results are related to public health and individual 
cases of patients and people. One of the challenges facing health pro-
fessionals and practitioners is adopting well-performing models. Our 
contribution generates many results, and their analysis allows us to 
argue our choices and discuss priorities in the use of different 
techniques. 

The excellent visualized data separation in Figs. 4 and 5 expresses the 
successful choice of the applied data representation model and excellent 
data quality. 

Table 3 shows that the TSNE technique’s classification occupies 
almost all the results and statistically shows complete dominance. On 
the other hand, the SVM classifier has shown impressive results and 
almost perfect performance for data without reduction. Simultaneously, 
the RF technique collected all the best classification performances on the 
data reduced by TSNE, except with the CN category. 

For the global evaluation by the average, Table 4 confirms the 
excellent classification evaluation of the data reduced by the TSNE 
technique for the global evaluation by the average. 

Tables 3 and 4 show that the relevant variables exploited for the 
representation in a 3D space by the TSNE technique are more mean-
ingful and preferable for use by classifiers, especially with 3-NN and RF 

Table 3 
F-measure results for all classes.  

Class Classifier FM 

Without reduction With reduction 

LDMP LRPCA LRKPCA LRMDS LRTSNE 

AD NB 0.814 0.82 0.702 0.814 0.841 
SVM 0.985 0.822 0.711 0.82 0.823 
3-NN 0.908 0.849 0.792 0.884 0.913 
RF 0.919 0.905 0.839 0.906 0.937 

CN NB 0.694 0.578 0.59 0.579 0.728 
SVM 0.983 0.633 0.577 0.615 0.715 
3-NN 0.882 0.724 0.545 0.763 0.894 
RF 0.869 0.737 0.636 0.854 0.886 

EMCI NB 0.917 0.905 0.877 0.916 0.914 
SVM 1 0.915 0.901 0.921 0.931 
3-NN 0.976 0.923 0.873 0.96 0.974 
RF 0.944 0.93 0.894 0.956 0.979 

LMCI NB 0.633 0.524 0.461 0.504 0.603 
SVM 0.968 0.543 0.466 0.533 0.604 
3-NN 0.813 0.599 0.437 0.659 0.819 
RF 0.809 0.675 0.541 0.792 0.827 

SMC NB 0.934 0.927 0.936 0.923 0.921 
SVM 1 0.939 0.928 0.936 0.944 
3-NN 0.986 0.934 0.883 0.96 0.987 
RF 0.961 0.941 0.913 0.956 0.987 

No. best classifications Reductions cases / 0 1 0 19 
LDMP vs. LRTSNE 9 / / / 11  

Table 4 
F-measure global results.  

AVG all Class FM 

Without reduction With reduction 

LDMP LRPCA LRKPCA LRMDS LRTSNE 

NB 0.798 0.751 0.713 0.747 0.801 
SVM 0.987 0.77 0.717 0.765 0.803 
3-NN 0.913 0.806 0.706 0.845 0.917 
RF 0.9 0.838 0.765 0.893 0.923 
No. of best classifications Reduction cases / 0 0 0 4 

LDMP vs. 
LRTSNE 

1 / / / 3  

Table 5 
Classification evaluation comparison according to the chosen distances.  

AVG all Class FM 

LDMP based on LRTSNE based on 

J. dist H. dist L. dist J. dist H. 
dist 

L. dist 

NB 0.798 0.77 0.765 0.801 0.793 0.779 
SVM 0.987 0.957 0.955 0.803 0.773 0.776 
3-NN 0.913 0.886 0.89 0.917 0.896 0.902 
RF 0.9 0.913 0.907 0.923 0.907 0.906 
No. of best 

classifications 
3 1 0 4 0 0  

Table 6 
Percentage of classification time elapsed on the LDMP and LRTSNE matrices in 
milliseconds for class AD.  

Classification techniques Classification times (Milliseconds) 

On LDMP (T1) On LRTSNE (T2) % (T2/T1) 

NB 109 1 0.90 
SVM 118 32 27.11 
3-NN 53 2 3.77 
RF 443 76 17.15  
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and techniques that adopt majority voting overall. The full set of LDMP 
matrix variables remained more useful for transformation and separa-
tion by margin maximization with the SVM classifier. These results 
justify our SVM classifier choice for a classification scenario without 
reduction and the choice of the TSNE technique and the 3-NN or RF 
classifier for the classification scenario with a reduction. 

Subsequently, the performances obtained according to the tests of 
the three distance measurements in Table 5 clearly show that the Jac-
card distance is the most efficient with the data reduction by the TSNE 
technique. For better readability, Fig. 6 presents the FM curves as a 
function of the three distances following the LRTSNE technique. 

Fig. 6 concludes that the Jaccard distance is the best and most suit-
able and that the 3-NN and RF classifiers are the best performers with 
the reduced data. 

The analysis of Table 6 shows that the elapsed time for classification 
on the LRTSNE matrix is short and sometimes negligible compared to the 
case without LDMP reduction, which is consistent with the benefit of 
data reduction and our model’s overall requirements. 

From this analysis and based on the usage needs, we define three 
application scenarios for our model. Data representation is a common 
task between them. Simultaneously, the first scenario is involved if the 
time factor is significant, which invokes the 3-NN classifier. However, if 
the time is less critical, we use the RF classifier in a second scenario. Of 
course, the chosen classifier will be applied to the data matrix reduced 
by the TSNE technique for these two scenarios. Conversely, if the time 
factor does not have any importance against FM performance, the third 
scenario applies the SVM classifier on the data without reduction. Ac-
cording to the Jaccard distance, the distance matrix production among 
the patients is another common task for these three scenarios. 

We have attained the challenge of choosing the most suitable rep-
resentation model to maximize the processed data set and minimize data 
and information loss. We have successfully passed the challenge of 
choosing the similarity distance, reduction plan and classifiers to apply. 
The three selected use scenarios confirm our success against the problem 
of choosing the best processing series. 

For Alzheimer’s disease described by the chosen dataset, the result-
ing performances demonstrate the importance of these diagnoses for 
judging patients’ medical statuses. These diagnoses may include ele-
ments that are weakly associated with this disease, but the resulting 
performance indicates that some of them are strongly correlated to the 
different categories if it is not the complete set. 

5.2. Comparison 

To judge our model and discuss its characteristics compared to cur-
rent research, we have examined previous works [34–37] that address 
the same classification problem based on patient and participant data. 
Globally, Table 7 summarizes the four targeted approaches and our 
contribution. The points adopted in this table are the characteristics 

considered almost typical among all the state-of-the-art works. 
Joloudari et al. [34] proposed a work to predict the patients’ state 

and the possibility of their liver disease suffering. Their process utilized 
data for 583 patients collected from 3 data sources, described 14 attri-
butes and tested five classifiers for comparison. With an attribute se-
lection strategy, the particle swarm optimization (PSO)-SVM is the best 
classifier that achieves the performance FM = 0.958. During processing, 
missing values, numeric and nominal data types are all treated, but 
Boolean, date, and time-series data are not treated. 

Terrada et al. [35] proposed an automatic process to boost athero-
sclerosis diagnosis. Data from 835 patients were employed, including 29 
attributes, and seven classifiers were tested for preference. This model 
applied an attribute selection strategy, and an ANN classifier generated a 
maximum performance of FM = 0.98. Except for numeric, nominal, and 
Boolean data, this process does not operate on the date data type, time 
series, and missing values. 

The approach of Carvalho et al. [36] is a dynamic decision model 
that is based on supervised learning. For the experimentation, a data set 
of 319 patients was employed, but this approach does not specify the 
adopted number of attributes for evaluating the eight tested classifiers. 
The best performance obtained was FM = 0.95 by the A1DE classifier 
within 145 min. In addition to disregarding time series, Boolean and 
date data are not considered in this approach. 

For 349 concerned patients, Lu et al. [37] classified cancer patients 
into two categories: ovarian cancer and benign ovarian tumor. For the 
relevant attribute selection among the 49 classifiers employed, the re-
sults of three classifiers are compared. The logistic regression classifier 
(log reg) returned the best performance FM = 0.97. This model processes 
only missing values and numeric and nominal data and disregards 
Boolean, date, and time-series data. 

Compared to our contribution, we utilized the richest dataset in 
terms of attribute number (87 attributes) without taking into account 
the approach [36], which does not include this detail. Our model clas-
sifies patient data into five distinct categories and tests four classifiers 
against other approaches. The TSNE technique adopted for data reduc-
tion allowed us to minimize the calculation time up to 32 ms. Although 
we did not use the same dataset as the other approaches, our dataset has 
a special quality (considered types and structures), but the excellent 
performance obtained indicates that our proposal succeeds in terms of 
selecting the most appropriate processing series. The complete variety of 
data types processed, the consideration of time series and missing 
values, and processing performance and elapsed time of treatment are 
all factors that highlight the exceptional characteristics of our model and 
its advantages compared to other works. This modular rating allows us 
to consider our model to be more reliable and more effective. 

6. Conclusion 

Automatic medical decision-making based on a personalized medi-
cine dataset is the main purpose of this work. Our proposal applies a 
treatment series to achieve this goal. Applied tasks process structured 
data that have several types. They also consider time series and missing 
values. We applied a current data representation model named DRRD. 
We tested the following three distance measures to calculate the pa-
tients’ similarity: Jaccard distance, Hamming distance, and Levenshtein 
distance. Subsequently, we tested the following four reduction tech-
niques: PCA, KPCA, MDS, and TSNE. We examined four classifiers—NB, 
SVM, 3-NN, and RF—to categorize patients. By experimentation on an 
Alzheimer’s disease dataset, we defined three use scenarios that were 
formed according to both performance requirements and processing 
time. Our model evaluation reached FM = 0.987 according to the third 
scenario and 2 ms of the first scenario’s elapsed time. By considering a 
compromise between performance and computation time (FM = 0.923, 
time = 76 ms), we recommend the second scenario of the following 
tasks: SDRRD, Jaccard distance, TSNE, and RF. Compared to other 
works, our proposal satisfied more characteristic factors and 

Fig. 6. FM comparison of classifications on LRTSNE data according to the 
distances chosen. 
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demonstrated wider potential. 
For future works and more than the real practical aspect of this 

proposal, we aim to endow our model with other modules for the most 
significant diagnoses and drug prescriptions. This extension aims to 
build a medical decision-making system to control patients’ classifica-
tion, data analysis and personalized treatments without side effects. 
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